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RIGIDITY IN THE HARMONIC MAP HEAT FLOW

PETER MILES TOPPING

Abstract

We establish various uniformity properties of the harmonic map heat �ow�
including uniform convergence in L� exponentially as t � �� and unique�
ness of the positions of bubbles at in�nite time	 Our hypotheses are that
the �ow is between 
�spheres� and that the limit map and any bubbles share
the same orientation	

�� Introduction

Let us consider smooth maps � � S
 � S
� We use z � x � iy as
a complex coordinate on the domain� obtained by stereographic projec�
tion� and write the metric as �
dzd�z� where

��z� �
	


 � jzj
 �

Similarly we have a coordinate u on the target� and a metric �
dud�u�
We are using the notation

dz � dx� idy� d�z � dx� idy�

with analogues for du and d�u� and we will write

uz �



	
�ux � iuy�� u�z �




	
�ux � iuy��

To the map � we associate the energy densities

e���� �
�
�u�

�

juzj
� e����� �

�
�u�

�

ju�z j
�

Received October ��� �����
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and

e��� � e���� � e������

The corresponding energies are

E���� �

Z
S�
e���� �

i

	

Z
C

�
juz j
dz � d�z�

E����� �

Z
S�
e����� �

i

	

Z
C

�
ju�z j
dz � d�z�

and

E��� � E���� �E�������
�

We also de�ne a local energy

E�x�r���� �

Z
Br �x�

e����

where B r �x� is the geodesic ball of radius r centred at x in S
� The
Jacobian of � is given by

J��� � e����� e������

and consequently we see that

E����� E����� � ��deg�����	�

For a �xed target chart� we may form

� �
�

�


�
uz�z �

	�u
�

uzu�z

�
��

The associated geometric object is � �
�u
� and the tension of � is de�ned

to be

T ��� � �
�

�u
� ��

�

��u
�

which is a section of ���TS
��
The critical points of the energy functional E are known as harmonic

maps� and the Euler�Lagrange equation which they satisfy is

T ��� � ��
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The harmonic map heat �ow is a solution � � S
 � ������ S
 of the
associated parabolic problem

��

�t
� T ���� ���� �� � ������

which we refer to as the �heat equation�� We call �� the �initial map��
The heat �ow was introduced by Eells and Sampson �	�� It is L
�gradient
�ow on the energy � loosely speaking� � evolves in order to decrease its
energy as quickly as possible�

For � �� S
 we measure the concentration over � of a �ow with
the quantity

E�R��� � sup
�x�t��������

E�x�R������ t���

We will have cause to embed the target S
 in R�� and see � as a
map v � R
� ������ S
 �� R

�� or �v � S
� ������ S
 �� R
�� and ��

as a map �v� � S
 � S
 �� R
�� In terms of v we have

e��� �



	
jrvj
�

and so

E��� �



	

Z
R�

jrvj
dxdy�

In the harmonic map heat �ow� the map v evolves according to

�v

�t
�



�

��v � vjrvj
�����

where � is the Laplace�Beltrami operator� We will denote the right�
hand side of ��� also by T � without confusion� We may also make
references such as E�v��� t�� meaning E����� t�� for related v and ��
Existence theory for the heat equation was studied by Struwe in

���� The equation was shown to have a global weak solution �which is
now known to be essentially unique ��� and to be smooth except at
�nitely many points in space�time� For much of this paper we will be
considering only the asymptotic behaviour of the �ow at in�nite time�
in which case we may assume it is globally smooth�

Struwe�s theory also described how �bubbles� may occur in the heat
�ow� We need an extension of this which is the following theorem of
Qing ����
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Theorem �� Let v be the solution of ���� corresponding to a solu�
tion � of ���� Then there exist �nitely many non�constant harmonic
maps f�	kgmk�� from S
 to S
 �seen as maps f	kgmk�� from R


 to S
 via
stereographic projection� together with sequences

�i� ftig with ti ���

�ii� ffaki ggmk�� in R
 with limi�� aki � xk � R
 for 
 � k � m �where
xk corresponds to a point �xk � S
�� and

�iii� ff
ki ggmk�� with 
ki � � for 
 � k � m and any i� and limi�� 
ki �
� for 
 � k � m�

such that

ki



j
i

�


j
i


ki
�
jaki � a

j
i j



ki 

j
i

� �� as i���

and

lim
t��

E�v��� t�� �
mX
k��

E�	k�����

and moreover�

v�x� ti��
mX
k��

�
	k

�
x� aki

ki

�
� 	k���

�
� 	�

strongly in W
��

loc
�R
�R�� as i���

Remark �� In fact� Qing proves more than Theorem 
� We are
using his theorem on Palais�Smale�type sequences rather than his the�
orem on the harmonic map heat �ow� Of course� to be able to do this
we must �nd a sequence ftig with ti �� such that T ����� ti��� � in
L
�S
�� Such a sequence is easy to �nd �see ��� or deduce it from �
����
Qing�s work has now been generalised by Ding and Tian �
��

We will refer to the map �	� as the �body map�� and to the maps
f�	kgmk�� as �bubbles�� The points f�xkgmk�� will be known as bubble
points� or blow�up points�

Of course� for ��� to hold� we should choose our domain chart so
that none of the blow�up points correspond to the point at in�nity in
the domain� though this is just a technical point�
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As the statement of Qing�s theorem is technical� we will describe
some of its implications in more intuitive language� The theorem says
�rstly that there exists a sequence of times ftig at which the heat �ow
�v converges weakly in W ��
�S
�R�� to the harmonic map �	� �and in
particular strongly in Lp�S
�R�� for p � �
���� and that we have the
strong convergence

�v��� ti�� �	� in W
��

loc
�S
nfx� � � � xmg�R�� as i������

The theorem also says that near the bubble points fxkgmk��� the energy
of the �ow concentrates� and that by rescaling appropriate regions by
appropriate amounts� we see new maps � the bubbles� So much was
known from the work of Struwe ���� An important aspect of the theorem
is that it tells us that all the energy of the �ow is accounted for by the
body map and the bubbles�
In this paper we show that some of the asymptotic properties of the

heat �ow hold uniformly as t �� rather than just at a special sequence
of times ftig�

�� Statement of the results

Before we state our results� we must recall that any harmonic map
from S
 to S
 �or more generally from S
 to a surface� is either holo�
morphic or anti�holomorphic� The proof is simple and may be found in
��� for example�
We now give our main theorem�

Theorem �� Suppose we have a solution � of the heat equation
���� and the corresponding v and �v� Suppose moreover that at in�nite
time� the bubbles and the body map are all holomorphic or all anti�
holomorphic� Then with the de�nition of �	� and f�xkgmk�� as in Theorem
� we have that�

�i� �v��� t� � �	� uniformly as t � � weakly in W ��
�S
�R�� � and
hence strongly in Lp�S
�R�� for any p � �
����

�ii� �v��� t� � �	� uniformly as t � � in Ck
loc�S


nf�x� � � � �xmg�R�� for
any k � N�

�iii� for any r � � su�ciently small and k � f
 � � �mg� the quantity
E��xk�r������ t�� converges to a limit Fk�r uniformly as t���
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Remark �� In fact� we can control the rate of convergence too �see
����� It will follow from the proofs of our theorems� for example� that
given � �� S
nf�x� � � � �xmg there exist C � � and  � � such that�

�i� k�v��� t�� �	�kL��S�� � C �E���v��� t���
�

� � Ce��t�

�ii� k�v��� t�� �	�kW ����� � C �E���v��� t���
�

� � Ce��t�

�iii� jE��xk�r������ t��� Fk�r j � C �E���v��� t���
�

� � Ce��t�

A consequence of parts �ii� and �iii� of Theorem 	 is that we cannot
pick another sequence of times ftig in Qing�s theorem and get a di�erent
set of blow�up points f�xkg�
Although our result may be true if we allow some of the maps

f	kgmk�� to be holomorphic and others anti�holomorphic �in other words
absolutely no restrictions on the �ow� it is no longer true if we drop the
condition that the target is S
� An example in which parts �i� and
�ii� fail is given later� In fact� we believe that part �iii� may also fail
� a sketched counter�example will be given in ��� in which a di�erent
sequence of times ftig gives a di�erent number of bubbles�
We remark that we do have an example of a heat �ow satisfying the

hypotheses of Theorem 	 in which bubbling occurs� We will give this in
���� The body map in this example is constant�
We also have the following perturbation result for �ows which are

smooth for all time �i�e�� �ows with no bubbles at �nite time � see Struwe
�����

Theorem �� Suppose we have two solutions of the heat equation�
which we write as maps �v and �w from S
 � ����� to S
 �� R

�� with
initial maps �v� and �w� from S
 to S
 �� R

�� Suppose moreover that for
the 	ow �v there are no bubbles at �nite time and that the bubbles and the
body map at in�nite time are all holomorphic or all anti�holomorphic�

Then with f�xkg the blow�up points of the 	ow �v as in Theorem ��
we have that for all � � �� � �� S
nf�x� � � � �xmg and r � � su�ciently
small� there exists � � � independent of �w such that if

k�v� � �w�kW ����S�� � ��

then

�i� k�v��� t�� �w��� t�kL��S�� � � for all t � ��

�ii� k�v��� t�� �w��� t�kW ����� � � for all t � ��
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In other words� if we start a new �ow close to the original one� then
it will stay close in L
 for all time� and close in W ��
 away from the
blow�up points� We remark that the perturbed �ow may blow up in
�nite time�
As in Theorem 	 the hypothesis that the target is S
� rather than

something higher dimensional� cannot simply be dropped� In fact in ���
we will give an example of a harmonic map �from S
 to a higher dimen�
sional target� which blows up under arbitrarily small C� perturbations�
By considering a perturbation of a harmonic mapping from T 
 to an
equator of S
� we see that the theorem is not true for general domain
surfaces�

Remark �� The condition that the body map and bubbles at in��
nite time are all holomorphic or all anti�holomorphic will certainly be
satis�ed if we impose the condition

E���� � �� � ��jdeg����j

on the initial map ��� This follows from �
� and �	� and the fact that
if � � S
 � S
 is a non�trivial holomorphic map� then E���� 	 ��� We
omit any further details�

�� The key estimate

In this section we derive a key estimate controlling the ��energy in
terms of the tension� The estimate is very similar to the key estimate
of Leon Simon in his important paper ���� However� in the special
case of maps between 	�spheres� and with the harmonic map energy
functional E� we are able to reduce Simon�s hypothesis ofW 
�
 closeness
to a harmonic map� to just smallness of the ��energy� This makes it
applicable to maps with bubbles� assuming the bubbles and the body
map are all anti�holomorphic �or all holomorphic��
Very loosely speaking� the harmonic map heat �ow can only keep

moving energy about for all time if the total energy is dissipated very
slowly� The point of the estimate will be to show that this cannot
happen� and thus that the heat �ow becomes �rigid� for large times�

Lemma �� There exist �� � � and � � � such that providing � �
S
 � S
 satis�es E���� � ��� we have the estimate

E���� � �kT ���k
L��S������
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Before proving Lemma 
 we recall the following lemma from
��� Theorem 	������

Lemma �� Suppose we have an operator I on functions f � C � R

given by

�If��w� �

Z
C

f�z�

jz � wj
i

	
dz � d�z�

Then for q � �
� 	� we have the estimate

kIfk
L

�q
��q �C�

� C�q�kfkLq�C� �

Proof� �Lemma 
�� Fix global complex coordinates z and u on the
domain and target respectively� With these coordinates� we consider
the quantity �
uz � To begin with� we calculate

��
uz��z � �
uz�z � 	��uu�zuz � 	���u�u�zuz���

� �
��


�
� � 	���ujuz j
��
��

by ��� In particular� as ��u � ��

u�


� we see that

j��
uz��zj � j�
�� j� �
juz j
��

�

We now apply Cauchy�s theorem for C� functions to the function
�
uz to get� for jwj � r�

�
uz�w� �



	�i

Z
�Dr

�
uz

z � w
dz �




	�i

Z
Dr

��
uz��z
z � w

dz � d�z�

where Dr � fz � C � jzj � rg� Allowing r to tend to in�nity� and
observing that j�
uz j � � as jzj � � �because j �

�
uz j is bounded� we

see that

�
uz�w� �



	�i

Z
C

��
uz��z
z � w

dz � d�z�

Combining this with �

�� we have

j�
uz�w�j � 


�

Z
C




jz � wj�j�

�� j� �
juzj
� i

	
dz � d�z�

Now we observe that the right�hand side is independent of which stere�
ographic chart we took for the target �note for example that j�� j is the
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length of � �
�u
� so by taking a chart for which � � C corresponds to ��w��

we obtain the estimate

j�uz�w�j � 


	�

Z
C




jz � wj�j�

�� j� �
juzj
� i

	
dz � d�z��
	�

But now� all the terms are independent of the target chart� allowing us
to change target chart� or equivalently to move w with a �xed chart�
To develop estimate �
	� we need to appeal to the theory of Riesz

potentials� and in particular to Lemma 	� This produces� for q � �
� 	��
the �rst of the estimates

k�uzk
L

�q
��q �C�

� C
�k�
��kLq�C� � k�
juzj
kLq�C�

��
�

� C
�
k��kLq�S�� � k�uzk
L�q�C�

�
�
��

� C

�
k��kL��S�� � k�uzkL��C�k�uzk

L
�q
��q �C�

�
��
��

whilst the last follows from applying H�older�s inequality to both terms�
The constant C is changing� of course� but remains independent of ��
Now� as E���� � k�uzk
L��C� � we see that there exists �� � � such that
providing E���� � ��� we may absorb the second term on the right�hand
side into the left�hand side to give

k�uzk
L

�q
��q �C�

� CkT kL��S���

This then easily yields

�Z
S��

e����

� �

�

� k�uzkL��D�� � Ck�uzk
L

�q
��q �D��

� CkT kL��S���

where S

� is the hemisphere corresponding to the points in the domain

with jzj � 
� Repeating the estimate with the �opposite� chart to give
a ��energy estimate over the remaining hemisphere� and combining the
two� we are left with

E���� � CkT k
L��S���

q�e�d�
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Remark �� We remark that we have in fact proved more than
stated in that we can control the Lp norm of e���� for any p 	 
 not
just p � 
�

Remark �� Our key lemma is the part of this work which requires
the hypotheses on the domain� target and �ow� As we shall see� for a
�ow ���� t� the ��energy E������ t�� is exactly half the energy still left to
be dissipated during the �ow� but in fact whenever we have an estimate
of the form

�energy left to dissipate� � kT kp
L��S��

for some p � 
� the forthcoming proofs will be valid� Of course� such an
estimate will not be true in general as the conclusions of our theorems
are not true in general�
Although we only discuss the case of round 	�spheres in this work�

we mention that the key lemma as stated implies the same lemma with
a deformed domain metric� and that the proof can be modi�ed to imply
the same lemma with a deformed target metric�

�� Proof of the results

Before giving the proofs we state a supporting lemma which is a
consequence of successive iterations of a result of Struwe ��� Lemma
�
���� The lemma gives control of Ck norms of the �ow away from any
points where the energy density concentrates�

Lemma �� There exists �� � � such that whenever we have a solu�
tion � � S
������� S
 of the heat equation ��� satisfying E�R��� � ��
for some R � � and � �� S
� then the H
older norms of � are bounded
uniformly on �� ����� for any � � ��

Proof� �Theorem 	�� Without loss of generality� we will assume that
the body map and all the bubbles are anti�holomorphic� rather than
holomorphic�
We begin by recalling the well known fact that

d

dt
E����� t�� � �kT ����� t��k
L��S����
��

This is easily proved by writing E in terms of v� and using ���� Moreover�
as a combination of �
� and �	� gives

E���� �



	
�E��� � ��deg���� �
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we see that

d

dt
E������ t�� � �


	
kT ����� t��k
L��S����
��

Qing�s description of the bubble tree in Theorem 
� together with the
fact that the maps f	kg are all anti�holomorphic� tells us that at his
sequence of times ftig� the ��energy is converging to zero� As the ��
energy is decreasing �equation �
��� we then see that

E������ t��� � as t����
��

In particular� there exists a time T such that if t 	 T � then E������ t���
��� where �� is de�ned in Lemma 
� As we are concerned only with the
asymptotics of the heat �ow� we may suppose for simplicity that T � ��
Moreover� we may assume that no �nite time blow�up occurs�
We note then that the combination of Lemma 
 and equation �
��

implies the exponential decay of E������ t�� which is necessary to estab�
lish the exponential convergence mentioned in Remark 	� An alternative
application of Lemma 
 gives

� d

dt
�E������ t���

�

� �



�
�E������ t����

�

� kT ����� t��k
L��S��
	 


�
p
�
kT ����� t��kL��S���

and thus� for t� � �����Z
�

t�

kT ����� t��kL��S��dt � C �E������ t����
�

� ��
��

The �rst application of �
�� is the calculation

sup
t��t����

k�v��� t�� �	�kL��S�� �
Z
�

t�

������v�t
����
L��S��

dt

�

Z
�

t�

kT ����� t��kL��S��dt�	��

�C �E������ t����
�

� �

The exponential decay of E������ t��� then gives us the L
 exponential
convergence of Remark 	� In pursuit of Theorem 	� however� we are
satis�ed with the weaker statement

�v��� t�� �	� in L

�S
�R�� as t����	
�
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A consequence of this is that

�v��� t�� �	� weakly in W
��
�S
�R�� as t����		�

This is because otherwise we could pick a sequence of times ftig to give
jh�v��� ti�� �i � h�	�� �ij � ���	�

where � is some test function� � � �� and h�� �i is the inner product of
W ��
�S
�R��� Then� as the total energy E is bounded �E����� t�� �
E����� ���� we could pass to a subsequence of times �also called ftig�
such that

�v��� ti�� � weakly in W ��
�S
�R�� as i����	��

for some �� The convergence would thus be strong in L
�S
�R��� and
so by �	
� we would have � � �	�� There would then be a contradiction
between �	� and �	��� So �		� holds� which is part �i� of Theorem 	�
Of course� as W ��
 is compactly embedded in Lp for any p � �
����

the convergence in �		� tells us that

�v��� t�� �	� in L
p�S
�R�� as t���

We now proceed to consider the local oscillation of energy� For
r� s � �� de�ne a cut�o� function � � R
 � R by

��x� �

	
�

�

 if jxj � r�


 � �
s
�r � jxj� if r � jxj � r � s�

� if jxj 	 r � s�

and de�ne the �cut energy� �w of a map w � R

 � R

� by

�w � �
�r�s�
w �




	

Z
R�

�
jrwj
�

We also write
��t� � ��r�s��t� � �

�r�s�
v���t��

The cut energy is about the point in S
 corresponding to the point
� � R


� but this could be any point by taking a di�erent chart� The
energy � evolves according to

d�

dt
�

Z
R�

�
rvi�rT i � �
Z
R�

�
jT j
�
 � 	
Z
R�

��r��rvi�T i�



rigidity in the harmonic map heat flow ���

Abandoning the �rst term on the right� and using H�older�s inequality�
we estimate

d�

dt
� 	

s
�

�

� kT kL��S���
where we are assuming that r � s � 
 to avoid an extra constant�
Integrating this� we see that the cut energy can only vary within the
restriction

�
�

� �t��� �

� �t�� � 

s

Z t

t�

kT ����� ���kL��S��d��

and thus� by �
���

�
�

� �t�� � �

� �t�� � C

s
�E������ t����

�

� ��	��

where t � t�� of course�
The power of �	�� is evident� It would be required to establish the

exponential convergence of part �iii� of Remark 	� However� we will be
using the simple consequence that there exists a number l�r�s� such that

��r�s��t�� l�r�s� as t����	��

For any � �� S
nf�x� � � � �xmg this provides us with the uniform control
of concentration

E�R��� � ���

for some R� enabling us to apply Lemma  to get

k�v��� t�kCk�� � C�k� uniformly for t � �
����
for all k� We can deduce the convergence of a subsequence of any se�
quence �v��� ti� in Ck��� for any k� and hence establish part �ii� of The�
orem 	 via the obvious contradiction argument�
Having established part �ii�� part �iii� of Theorem 	 then follows

from a further application of �	��� q�e�d�

Before proving Theorem � we need a perturbation result for �nite
time intervals�

Lemma �� Suppose we have two solutions of the heat equation�
which we write as maps �v and �w from S
 � ����� to S
 �� R

�� with
initial maps �v� and �w� from S
 to S
 �� R

�� Suppose moreover that
T � � and that the 	ow �v has no bubbles up to time t � T �in other
words �v is smooth for t � ��� T ���
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Then for all � � �� there exists � � � independent of �w such that if

k�v� � �w�kW ����S�� � ��

then

k�v��� t�� �w��� t�kW ����S�� � � for all t � ��� T ��

Proof� �Lemma ��� We sketch the proof� which essentially follows
from the work of Struwe�
For �� � � we may choose R su ciently small so that

sup
�x�t��S�����T �

E�x�
R���v��� t�� �
��

�
�

This is possible as �v is regular for t � ��� T �� Then for k�v�� �w�kW ����S��

su ciently small� we may ensure that

sup
x�S�

E�x�
R�� �w�� �
��

	
�

Thus by Struwe�s local control on the increase of energy ��� Lemma ����
for � � � su ciently small� we have that

sup
�x�t��S�������

E�x�R�� �w��� t�� � ���

Here � is dependent on �v only in terms of R� and essentially independent
of �w� The lemma then follows for T � � by ��� Remark ���� By
dividing up the interval ��� T � into intervals of length no more than �

and applying the lemma for T � � iteratively� we establish the lemma
for general� �nite� T � q�e�d�

Proof� �Theorem �� As in the proof of Theorem 	 we will assume
without loss of generality that the body map and all the bubbles are
anti�holomorphic� rather than holomorphic�
The basic idea of the proof is to use Lemma � to show that the

�ows stay close until the ��energy is small� and then use the techniques
we developed in the proof of Theorem 	� We set �� as in Lemma 
 in
anticipation�
We will distinguish between the body maps of the �ows �v and �w

by calling them �v� and �w� respectively� In keeping with our previous
notation� v and w will be the maps from R


� ����� associated to �v and
�w �the maps from S
 � ������ via stereographic projection�
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Part �i� of Theorem  will follow from �	��� For any ��� �
 � �� we
may choose T su ciently large so that

k�v��� t�� �v�kL� � �� for t 	 T�

from part �i� of Theorem 	 and

E���v��� t�� � min��
� ��
	
� for t 	 T�

from �
�� and

k�v��� t�� �v�kW ����� � �� for t 	 T�

from part �ii� of Theorem 	� Then for any �� � �� we may apply Lemma
� to �nd � � � such that providing k�v� � �w�kW ����S�� � �� we have

k�v��� t�� �w��� t�kW ����S�� � min����
��

	
� ���	��

for all t � ��� T �� Therefore we must have
E�� �w��� t�� � E�� �w��� T �� � min��
 � ��� ��� for t 	 T�

and so we may use �	�� to estimate

k �w��� t�� �w�kL� � C��
� ���
�

� for t 	 T�

Combining the above� we �nd that

k�v��� t�� �w��� t�kL� � k�v��� t�� �v�kL� � k�v� � �v��� T �kL�
�k�v��� T �� �w��� T �kL�
�k �w��� T �� �w�kL� � k �w� � �w��� t�kL�

� 	�� � �� � 	C��
 � ���
�

� �

for t 	 T � and thus by taking ��� �
� �� su ciently small and using �	��
again� we establish part �i� of Theorem �
To establish part �ii� we must control locally the oscillation of the

�rst order part of the W ��
 norm� By adapting the argument below�
with w � v� we could establish the exponential convergence of part �ii�
of Remark 	� With � and � as in the proof of Theorem 	 we calculate

d

dt

�



	

Z
R�

�
jr�w��� t�� v��j

�

�
d

dt
�w���t� �

d

dt

�Z
R�

�
rw��� t��rv�
�
�

�	��
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The second term on the right�hand side is controlled by ddt
�Z

R�

�
rw��� t��rv�
�  �


Z
R�

�
rT �w��� t���rv�


� C�v�� r� s�kT �w��� t��kL��S���

where we have integrated by parts and used H�older�s inequality� To�
gether with �	�� and �
�� we now have enough information to integrate
�	�� giving




	

Z
R�

�
jr�w��� t�� v��j
 � 

	

Z
R�

�
jr�w��� T �� v��j


� �w���t� ��w���T � �

Z t

T

C�v�� r� s�kT �w��� ���kL��S��d�

�
�
�

�

�

w���t� � �
�

�

w���T �

�
C

s
�E��w��� T ���

�

� � C�v�� r� s� �E��w��� T ���
�

�

� C �E��w��� T ���
�

� � C��
 � ����

where the constant C on the �nal line is independent of the �ow w

assuming we insist that k�v� � �w�kW ����S�� � 
 �for example� so that we
have a bound on the energy of w��� t�� Taking �
 and �� su ciently small�
we may make the right�hand side as small as we desire� Consequently�
for any �� � � we can ensure that

k �w��� t�� �v�kW ����� � k �w��� T �� �v�kW ����� � ���

Combining everything again� we see that

k �w��� t�� �v��� t�kW ����� �k �w��� t�� �v�kW ����� � k�v� � �v��� t�kW �����

��� � ��� � ��� � ���

for t 	 T � so by taking ��� �� su ciently small and making �� smaller if
necessary �and using �	�� again� we establish part �ii� of Theorem �

q�e�d�

�� An example of non�uniqueness

As promised earlier� we now give a counter�example to part �i� of
Theorem 	 when the condition that the target is S
 is dropped� No
bubbling occurs� The �ow has a �winding� behaviour and has a circle of
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accumulation points� The example will also show that a perturbation
of a locally energy minimising harmonic map may move far away under
the heat �ow� It therefore contrasts with the work of Leon Simon �����
in which these phenomena are ruled out under the hypothesis that the
target is real analytic�

Let the domain be S
 and the target R
 � S
� It is not important
that R
 is non�compact � as we shall see� we are only concerned with
a bounded region� so we could change it to a �at 	�torus� We give the
domain the standard metric� but give the target a warped metric � if
g and h are the standard metrics on R
 and S
 respectively� then at
a point �z� x� � R


 � S
� we de�ne the metric to be g�z� � f�z�h�x�
where f � R
 � R� is to be determined� In other words� the target is
R

 �f S


� We consider initial maps of the form u��x� � �z�� x� where
z� is independent of x� Such maps give solutions of the heat equation
��� of the form u�x� t� � �z�t�� x�� where z � R� � R


� and z evolves
according to

dz

dt
� �rf�z�t����	��

In other words� we have reduced the heat �ow to �nite�dimensional gra�
dient �ow for z on the function f � It remains to choose the function f so
that z may not have a unique limit� and so that moving z an arbitrarily
small amount from a point z� with rf�z�� � � �which corresponds to a
harmonic map� will make the solution of �	�� move away from z�� To
achieve this we take a �downwardly spiralling gramophone record�

f�r� �� �

�

 if r � 
�

 � e

�
�

r��

�
sin� �

r�� � �� � 	
�
if r � 
�

where �r� �� are polar coordinates� Taking initial conditions with r � 	
say� the solution for z will spiral in to give the circle r � 
 as the
accumulation set� Moreover� any point with r � 
 is a stationary point�
but perturbing r to be slightly larger will make the solution of �	��
spiral around� and move at least a distance 	 away�

Remark �� Of course� we are not restricted to using S
 in the ex�
ample above� In particular� the same idea will work for domains of any
dimension�
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